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SURFACE TENSION DRIVEN FLOWS IN 
MICRO-GRAVITY CONDITIONS 

M. STRANI* AND R. PIVAT 
University of Rome, Italy 

SUMMARY 

The importance of convective flows generated by surface tension gradients, in comparison with the 
ones generated by other driving forces, has been investigated in connection with space technological 
applications involving fluid processes. A theoretical model of the boundary conditions at the interface, 
considered free and diffusive, has been derived in general. tensor form to allow for the use of 
non-orthogonal curvilinear co-ordinates. For the study of flow fields contained in enclosures, these 
co-ordinates are more suitable to fit all the boundaries, in particular near the contact angle between the 
interface and the solid walls, thus giving more accurate numerical solutions. 

A computational procedure to solve the complete set of bulk and surface equations is proposed and 
applied to a simplified two dimensional flow in a rectangular enclosure with a temperature gradient 
between the lateral walls. The numerical results show the importance of considering the interface to be 
deformable and diffusive for an accurate evaluation of the convective flow in the fluid bulk. 
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1. INTRODUCTION 

The interface between two immiscible fluids generally influences the motion within the 
adjacent fluids through its geometrical shape and the surface tension gradients which may be 
generated along the surface by temperature or  concentration gradients. Surface tension 
gradients act as a shear stress at the surface itself, inducing significant convective flows 
besides the ones directly established by temperature and concentration gradients. 

These flows become important in comparison with buoyancy convective flows for small 
values of the modified Bond number, defined as the ratio of gravitational to surface tension 
forces. Therefore they are significant or may even become predominant for relatively small 
characteristic dimensions of the flow field, e.g. liquid films, or for reduced gravity conditions. 
In the latter context a large interest has been recently dedicated to flow processes in space 
for technological applications regarding, for instance, crystal growth and new composite 
materials. 

The effect of surface tension and its coupling with other driving forces may give rise to 
very complex flow phenomena which, in order to be controlled in technological applications, 
must be first investigated from a theoretical point of view with a sufficient level of 
completeness and accuracy. Considering that the surface tension driven motion is generated 
at the interface and, from there, it propagates into the fluid bulk, the application of proper 
boundary conditions at the interface plays a central role in the mathematical formulation of 
the problem. 
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Simplified interface balance equations have been used by several authors’-3 as boundary 
conditions for analytical or numerical solutions of the bulk equations. The assumption of a 
fixed rectilinear configuration4 or the discrete approximation in Cartesian co-ordinates of the 
interface,s viewed from the modern framework of sophisticated computational procedures, 
may not be adequate for an accurate simulation of the physical phenomena. 

To overcome the difficulties connected with the curvilinear shape of the free boundary, 
two different approaches may be followed: finite element techniques, typically adopted for 
free boundary flows such as the die swell p r ~ b l e m , ~ - ~  or a finite difference method based on a 
system of generalized co-ordinates with the free boundary coincident with a portion of a 
co-ordinate surface. 

The computational procedure presented in this paper is based on the latter approach, 
whose relative advantages have been discussed elsewhere.10+” 

A particular choice of generalized co-ordinates, based on the assumption of the stream 
function as one of the co-ordinates, has been proposed by Duda and Vrentas for the study of 
laminar liquid jets.I2 For complex flow fields with multiple recirculating regions, which may 
appear in surface tension driven flows in enclosures, a more general choice of boundary fitted 
co-ordinates must be assumed. 

A general formulation of the dynamical boundary conditions on the interface between two 
immiscible fluids was first derived, in tensorial form, by S~r iven . ‘~  The complete formulation 
of thermal and dynamical boundary conditions, with particular attention to non-equilibrium 
thermodynamic aspects, has been recently presented, in vectorial form and with reference to 
an orthogonal curvilinear co-ordinate system, by Bedeaux et aE.,I4 and Napolitano. l5 

For the study of flow fields contained in enclosures, as we often find in applications, 
non-orthogonal curvilinear co-ordinates may better fit all the boundaries, in particular near 
the contact angle between the fluid interface and the solid wall. 

The purpose of the present paper is, first, to derive the complete interface balance 
equations, in general tensorial form, which are valid for any non-orthogonal system of 
curvilinear co-ordinates, and second, to suggest a computational method for the solution of 
the complete set of bulk, interface and constitutive equations. 

In particular, in Section 2, the co-ordinate systems, utilized in the mathematical formula- 
tion, are defined and the bulk conservation equations, written in tensorial form for 
generalized co-ordinates, are also recalled. The discontinuous model for the interface is 
discussed in Section 3,  together with the derivation of the interface balance equations for 
mass, momentum and energy. 

In Section 4, starting from the interface entropy balance equation, the linear constitutive 
laws for the surface quantities appearing in the mass, momentum and energy balance 
equations, are derived in the frame of irreversible thermodynamic processes. 

A two dimensional sample flow with simplifying physical hypotheses is considered in 
Section 5 as a test case for the mathematical and computational model. 

The main features of the computational model are briefly discussed in Section 6 ,  while the 
numerical results for the sample flow are presented in Section 7. 

2. CO-ORDINATE SYSTEMS AND BULK CONSERVATION EQUATIONS 

The steady state motion of two immiscible fluids (+) and (-), separated by a surface S ,  of 
arbitrary shape, is considered in a three dimensional space S3.  

The surface B, the boundary of the domain containing both fluids, may be open when one 
or both fluids extend to infinity. Let ( x k )  be a system of orthogonal Cartesian co-ordinates 
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defined in S, .  As usually assumed, latin indices range from 1 to 3 ,  while greek indices range 
from 1 to 2. 

Assuming the surface S2 to be sufficiently smooth, we may consider in S3 a system of 
generalized co-ordinates ( C k ) ,  in which the surface S ,  is a co-ordinate surface, e.g. it may be 
expressed as 

5"=K (1) 
The symbols ( )+ and ( )- indicate respectively the fluids in the space regions on the two 

The co-ordinates ck are related to the Cartesian co-ordinates x k  by the equations 
sides of S,; that is, for E3> K and t3< K.  

where x k  and S k  are single valued and continuous differentiable functions. 
The metric tensor components g a k  (or g&) define the metric in the physical space S3. 
In the two dimensional subspace S,, given by equation (l), (e") is a generalized 

co-ordinate system whose metric is defined by the contravariant components yep (or 
covariant components -yap) of the metric tensor.'6 

For a generalized co-ordinate system the bulk conservation equations for fluids (+) and 
(-), in the hypothesis of steady state conditions, may be written, in tensorial form17 

( + k ) ; = k  = 0 
(4Stk)i, = 0 

with fluxes 4Sk,  SbSk of scalar and vectorial quantities respectively given by 

cbk = P U k  for mass conservation 

(4) 
( 5 )  

+ k  = puk( u++) + 4 k  - for total energy conservation 

4 t k  = p U I U k  - alk for momentum conservation 

where the thermal flux qk  and the stress tensor dk are given, for Newtonian bulk fluids, by 
the constitutive relations 

4 k  = -hghkT,h 

PIk = (-P +(& -3/&l",)gak + *(%Irn + %in)g""gk" 

For each bulk fluid the thermodynamic variables U, p ,  T, and p are connected by two 
equations of state, while p ,  p,,, and A have been assumed constant. 

3. BALANCE EQUATIONS AT THE INTERFACE 

From a purely macroscopic point of view the interface between two immiscible fluids is a 
particular case of a discontinuity surface S,, where the tensor distributions 4Sk,  4Ik in (41, ( 5 )  
may become singular. 

Under this hypothesis and by assuming the conservation equations to be valid everywhere 
in S 3 ,  following the procedure indicated by Bedeaux et u L . , * ~  the set of surface balance 
equations, in tensorial form and with reference to the generalized system of co-ordinates 
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mentioned in Section 2, has been previously obtained by the authorsI8 in the form: 

where 4" and are the surface densities of the field tensors, and 

I l I = l  ]+-I 1- 
The tangential surface balance equations (6) and (8) are the analogues of (4), (5 )  in the 

two-dimensional subspace S,, and account for the existence of local sources whose intensity 
is equal to the net flux across the surface of the bulk field tensors. 

Equation (7) is the surface balance in a direction orthogonal to the surface itself, and gives 
a condition on the curvature tensor of the surface, whose shape is a priori unknown. 

The surface balance equations, in their general form (6)-(8) are now specified for the case 
of an interface between two immiscible fluids, with the following hypotheses: 

(a) the interface S ,  is an impermeable surface, that is a stream surface at steady state; 
(b) local thermodynamic equilibrium prevails for the surface phase, implying the definition 

(c) surface density of mass, fi, equals zero; 
(d) surface density of energy, C = 60, and entropy s'= fig, are different from zero. 
For the mass conservation equation we therefore have 4k = p u k ,  # m  = Gva, and equation 

of surface velocity v a  and surface temperature 0;  

(6) becomes 

which, on account of hypotheses (c) and (a) is trivially satisfied with 

( E 1 3 ) + = ( u 3 ) - = 0  (10) 
For the momentum conservation equation we have + I k  = pu'uk - dk and, under 

Taking into account for (lo), equations (7), (8) become, 
hypothesis (c), = --Pa, where 6," is the diffusive surface flux of momentum. 

[":]++;r,,,,=o Jg33 - 

For the energy conservation equation we have 4" = iiv@ + l j @  - va6"", where, on account 
of hypothesis (c), the surface density of kinetic energy is zero and the surface diffusive energy 
flux has been divided into a mechanical and a thermal part. 

Considering (lo), equation (6) gives, 
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The surface balance of the mechanical energy is obtained multiplying (12) by v,, 

As a consequence, equation (13) may be written in the form 

1 - [q3 - d 3 ( U ,  - u,)]" + (iiv" + G")\Ia - cF'S"u,\\a = 0 
Jg33 

which expresses the surface balance of the thermal energy. 

4. CONSTITUTIVE EQUATIONS AT THE INTERFACE 

Surface diffusive fluxes ij" and Gap may be specified, in the frame of linear irreversible 
thermodynamics,'" starting from the surface entropy production equation which, consistent 
with the above mentioned model of the interface, may be written as 

1 1 1 .t cTi3 c l ;Sa  
(T ij" 

8 %2 Js- 
-- vf,-- %,a +B vg//, +7j q 3 [ --- 1 - +e [ui - U ' l l 3  0 

After some manipulations, the entropy production term may be written as the sum of 
tensorial products between thermodynamic forces and fluxes.'' The hypothesis of a Newto- 
nian surface fluid phase thus leads, by neglecting the cross-effects, to the following set of 
constitutive equations: 

I 

cl;; = (CT +@:)a; + Il; (16) 

G" = -A,y"'O,p (17) 

a: - = P5& (18) 
(19) fi" - 

p - P,[(%,,@ + ~L3\\s)YSa - @4y1 

which connect thermodynamic forces to the corresponding thermodynamic fluxes. 
Equations (16)-(19) are the constitutive relations for the surface stress tensor CJ."@ and the 

surface heat flux G", while (20)-(23) are the constitutive relations for the boundary values of 
a: and q' at the interface. 

The balance equations (10)-(12) and (14) together with the constitutive equations (16)- 
(23), give a complete set of boundary conditions, at the free surface, for the bulk conserva- 
tion equations (4), (5). 

The present mathematical model of the interface accounts for a large set of physical 
phenomena, in particular the surface diffusive processes and the discontinuity between bulk 
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and surface velocities and temperatures, which, under certain circumstances, may give rise to 
significant effects on the flow field configuration. 

This seems to be the case for surface tension driven flows, which require particular 
attention to the conditions at the free surface, where the driving forces are located. 

5 .  A TWO-DIMENSIONAL SAMPLE FLOW 

Let us assume, as a test case for a numerical application, a two-dimensional incompressible 
flow at zero gravity in the plane x1 = constant, previously considered by the authors.20 

A sketch of the physical and geometrical conditions of the flow field is shown in Figure 1. 
The two fluids (+) and (-) separated by an interface, are contained in a rectangular 

enclosure open on the side of fluid (+). A temperature difference is imposed between the 
two lateral walls of the enclosure. At zero gravity no buoyancy forces appear, but the 
temperature difference induces a surface tension gradient along the interface, which drives a 
recirculating flow in the adjacent fluid bulks. 

We assume that one of the two adjacent fluids, in particular fluid (+), has negligible effects 
on the interface, as would be the case for a perfect fluid at rest. This hypothesis allows us to 
consider only the bulk phase (-) and the surface phase, without any coupling with the flow 
field of fluid (+). It yields a simpler integration procedure from a numerical point of view, 
while maintaining most of the general features of the model. From a physical point of view 
this assumption may be reasonable if the viscous stress and the heat flux of fluid (+) at the 
interface may be neglected in comparison with the ones of fluid (-), as is the case, for 
instance, with an interface between air (+) and oil (-). In this hypothesis the pressure of 
fluid (+) may be considered constant and assumed as a reference pressure for the calcula- 
tions. 

Under these hypotheses the equations (20) and (21) combine to give the simpler relation 

1 1 1  
* 4P *33  

where -=-+-, and the bulk quantities, from here on, refer to the fluid (-), 

E 3  = CONST 

~ 

T =  1 

- 
Figure 1. Sketch of the physical and geometrical conditions 

for the two-dimensional sample case 
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Analogously the combination of equations (22) and (23) gives 

where 

In the present problem no velocity is imposed at the boundary. The Reynolds number of 
the flow, and consequently the reference velocity, must be chosen in an appropriate way to 
normalize the velocity field. As suggested by Ostrach,’ if the surface tension Reynolds 
number defined as 

R m  = u,T IT, A T E d p 2  

is sufficiently small, we obtain from the balance between viscous tangential stress and surface 
tension gradient at the interface, and for both terms to be of the same order of magnitude, 

and, as a consequence the Reynolds number Re may be written as 

Re=% 

Moreover, for the considered cases of low recirculating velocities, the Eckert number 

With the above assumptions the complete set of field equations may thus be written in 
assumes a very small value and therefore all the terms proportional to it may be neglected. 

non-dimensional form (latin indices range from 1 to 2 for the 2-D flow), 

where Mu = R,Pr is the Marangoni number and 

hn km g 
1 

qhk =-pghk +- (unlm + u m j n ) g  
- R r -  

while the boundary conditions at the free surface become 

& 3 = 0  
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with the constitutive relations 

A linear relation between surface tension and temperature is assumed 

where the Crispation number Cr is given by 

cr = IT, AT/a IT, 

The surface balance equations (30), (32), (33) are boundary conditions at c3 = K for the 
bulk conservation equations: from their solution the boundary values of the two bulk 
velocity components g2, g3 and of the bulk temperature r, are obtained. 

We may observe that, besides the bulk quantities, the surface velocity, p2, and the surface 
temperature, e, appear in these equations as further unknowns to be determined. Accounting 
also for the constitutive relations (36), (37) on the boundary values of ~2 and q3 at the free 
surface, we may easily verify that the number of equations is sufficient to determine all the 
unknown boundary values at the interface. In particular for the velocity field, with g3  = 0 
from equation (30), the two remaining components g2 and v 2  are determined by the two 
equations (32) (after substitution of (34)) and (36). For the temperature, the surface and bulk 
boundary values Q and T, are determined from the two equations (33) (after substitution of 
(35)) and (37). 

The remaining surface balance equation (3 1) determines the unknown component BZ2 of 
the curvature tensor bpa of the surface S2,  and, with the appropriate boundary conditions 
about the contact angle at the solid walls, its unknown geometrical shape 

3," = X,"(S', 5") 
in the Cartesian co-ordinate system (5  '). The metric coefficients and Christoffel symbols that 
appear in the differential equations and boundary conditions may be expressed as function of 
3," and its derivatives. 

It can easily be recognized that the simplified set of boundary conditions at the interface, 
which follow from the hypotheses 

Q - 2 - 0  - 2  - Q"=0 T I E L K = @  g 2 I t L K = 2 )  2 
- 

most frequently assumed in the literature on this subject, are immediately obtained from 
(30)-(37) for A, -+ 0, p3 -+ 0, g -+ m, L + m. 

The mathematical model described in this section, although simplified with respect to the 
general one, still leads to a very complicated set of equations which requires the adoption of 
a numerical integration procedure. The main features of the finite difference computational 
method are discussed in the following sections together with the most significant numerical 
results obtained for the considered sample case. 
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6. COMPUTATIONAL PROCEDURE 

Co-ordinate transformation 

The map from the field domain in the physical space ( x k )  to a domain bounded by 
portions of co-ordinate surfaces in the transformed space ( x k ) ,  is performed through the 
analytical functions 

where h and 2 are the average height and the length indicated in Figure 1. H(s2)  is a 
continuous differentiable single valued function representing the interface geometrical con- 
figuration, while f (e2), t(t3) are two stretching functions which allow for non-uniform mesh 
size in the integrath domain. The following stretching functions have been adopted for the 
present numerical results 

(a) f (g2) = g2 t(f3) = f 3  
that give a uniform mesh size, or 

tanh [CX($*-0-5)]+tanh (0.5 C,) 
2 tanh (0.5 C,.) 

tanh ( C,,t3) 
t(_53' = 2 tanh (C,) (b) f g2 )  = 

that give smaller mesh sizes near the fixed and free boundaries. The values of the two 
constants C,, C,, determine the stretching intensity in x and y directions, respectively. 

The metric tensor components and the Christoffel symbols for both space and surface 
co-ordinate systems, are easily determined by successive derivations of the functions (39) and 
(40) . 1 6  

A numerical generation of boundary fitted co-ordinates could be efficiently obtained with 
the method proposed by Thames et aL2' in the presence of more complex boundary shapes, 
as may occur, for instance, if H(z2)  is not a single valued function. 

Discretization schemes 

For the integration of the bulk conservation equations, (26)-(29), the contravariant 
velocity components gk, the pressure p and the temperature T, are assumed as field 
variables. In the discretization scheme they are localized on independent meshes shifted with 
respect to a reference cell, to reproduce the proper extension of the MAC method22 to 
curvilinear co-ordinates, as indicated by Piva et al." in a finite element context. In fact the 
contravariant velocity components, directly connected to the mass fluxes across the cell sides, 
are located at cell midsides, while the pressure and temperature are located at the centre of 
the cell. 

The metric coefficients which are associated with all variables in the equations need to be 
calculated both at the centre of the cell and at the cell midsides, thus in a grid twice as fine as 
the one adopted for the physical variables. Analogously, the surface variables a, @ and g2 are 
defined respectively at the step centre and at the nodes of the surface grid. 

Integration procedure 

The steady state momentum and energy conservation equations for the fluid bulk are 
integrated by a standard time-dependent-like iterative procedure, which satisfies, at each 
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time step, the mass conservation equation up to a certain level with successive iterations over 
a simplified set of  equation^.^^ 

The boundary values of the field variables are obtained, at each iteration step, by a finite 
difference approximation of equations (30)-(37) for the free boundary, and of the following 
boundary conditions for the solid walls. 

\ 
u - F - 3  2 -  2-0 52=0,1 

g 2 = g 3 = o ,  g3=0 

For the velocity interface conditions the finite difference approximation of (32) ,  (34), (36), 
gives two coupled tridiagonal sets of linear equations in the unknowns g2 and g2, that can be 
written as 

-A( i)g2( i + 1) + B ( i)t.j2( i) - C(i)g2( i - 1) + Q( i)p2( i) = D( i) (41) 
-a(i)v2(i + 1) + b(i)g2(i) - c(i>p”(i - 1) + q(i)g2(i) = d(i) ( i  = 2, IF- 1) (42) 

with the conditions at the solid walls ( i  = 1, i =IF)  

g”( 1) = $( 1) = 0 
g2(IF) = v2(IF) = 0 

(43) 
(44) 

The coupled system (41)-(44) has been solved with a procedure, described in the 
Appendix, that generalizes the well known tridiagonal a lg~ri thm.’~ 

For the temperature interface conditions, a linearization of (37) has been used assuming as 
unknowns the values A T  and A@, respectively, of the bulk and surface temperature 
differences between two successive time iteration steps. By a proper assumption of the initial 
temperature distribution, A T  and A@ are always small enough to neglect higher order terms. 
The finite difference approximation of (33) ,  ( 3 3 ,  (37) is reduced to a tridiagonal coupled 
system of equations in A T  and A@ exactly analogous to (41)-(44) and solved with the same 
procedure. 

At each iteration step the geometrical configuration H(s2) of the interface, consistent with 
the approximate flow field, can be determined by the integration of equation (31). The 
pressure in the bulk field is determined with respect to a value pol which is an unknown 
parameter of the second order non-linear differential equation in H ( g 2 ) .  Accounting for the 
expressions of (133, eZ2 and bz2, equation (31) can be written, in the absence of mesh 
stretching, as 

Y = aH,x (45) 

where B(x), A(x) are known functions at each time step, and the co-ordinate x 2  is hereafter 
indicated as x = s2. The following wall boundary conditions are associated with equations 
(45) and (46). 

Y (0) = aH,, (0) = Yo (47) 
Y(1)=aHx(1)=Y1, (48) 



SURFACE TENSION FLOWS 377 

as well as the condition of total fluid volume conservation, 

101@(x) dx = 1 (49) 

The system (47)-(49) is solved through a semi-analytical technique. In fact the solution of 
(46)-(48) is given by 

Y Y O  

(1 + y2)"2 - (1 + y;)1'2 - 

where po is determined by - 

Equation (51) is a dynamical balance for the entire interface in the x3 direction. The 
function g ( x )  follows immediately from (45) and (49). 

Test case for the numerical procedure 

The computational model has been tested first with reference to the asymptotic case of 

u = - -+ 0 for which an analytical solution has been given by Levich." In this solution, the 

velocity and the pressure gradient in the central region of the enclosure are expressed by 

h 
1 

d g -  3 dLr __-- 
dx 2 a K d x  (53) 

The analytical solution is compared in Table I with the one obtained from the computa- 
tional model in which the following values of the parameters were assumed 

R,=2 p r = 1  , i , = p , = ~  ~ = L . = I  a = 0 - 1  *=-0.1 

The numerical results, reported in Table I, correspond to the centreline of the enclosure. 
dx 

Table I 

u2xlo-2  3 
u2 x (numerical dx (numerical 

Y = y l h  (52) solution) (53) solution) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0-8 
0.9 
1.0 

0 
0.425 
0.700 
0.825 
0.800 
0.625 
0-300 

-0.175 
-0,800 
-1.575 
-2.500 

0 
0.435 
0.692 
0.812 
0.783 
0.609 - 
0.287 

-0.183 
-0.804 
-1.570 
-2.510 

-7.5 -7.4 
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7 .  NU-RICAL RESULTS FOR THE SAMPLE FLOW 

Several numerical results are presented and discussed in this section to assess the ability of 
the proposed numerical model to simulate, with a relatively small number of mesh points, 
the flow field even in the case of large deformation of the free surface. 

The effects of the surface diffusive processes on the flow field configuration are also 
investigated to emphasize their relevance under certain physical conditions. A more systema- 
tic analysis of the ranges of variability for the non-dimensional parameters introduced in the 
mathematical model will be successively illustrated by the authors in a paper under 
preparation. 

.................................. ...................................................................................... 
Figure 2.  Streamline computer plot for R, = 20, Pr = 1 ,  a =@t i ,  Cr = 0.5 and free 

diffusive interface 

- 0 . 2  I 
Figure 3. Bulk pressure distribution along the interface. Rc = 20, 

Pr = 1, a = 0.5, Cr = 0.5 and free diffusive interface 
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The numerical values of the diffusive surface coefficients A,, p,, g ,  &, are not generally 
known. A unit reference value has been therefore assumed for the surface coefficients 
(4, = ys = g = I ,  = 1) for the case of diffusive interface. As illustrated in Section 5 the 
non-diffusive interface is given by the values A, = p, = 0 and ly = & = 0.8 x lo4. 

According to the reference velocity assumed in section 5 ,  the Reynolds number is always 
equal to the surface tension Reynolds number, while a unit value of the Prandtl number is 
assumed for all calculations. 

The flow field for values of R, = 20, a = 0.5, Cr = 0.5 is first considered. An extreme value 
of the Crispation number, corresponding to very small surface tension and very large 
temperature gradients, has been assumed to enhance the effects of the surface deformation 
in comparison with the case of a flat undeformed surface, in order to test the capability of the 
proposed numerical method. 

The computer plot of the streamline field, obtained with a (10 x 10) grid (Figure 2) shows 
the deformation of the interface boundary. The recirculating flow gives rise to approximately 
linear pressure distribution along the surface, with a maximum on the left side of the 
enclosure (Figure 3), which models the shape of the interface itself. Temperature and 
velocity vertical profiles at the enclosure centreline present the characteristic behaviour of 
recirculating flows. Velocity and temperature profiles at the section of maximum longitudinal 
velocity are shown quantitatively in Figures 4 and 5 ,  where the numerical results for a flat 
non-diffusive interface and three values of &(2,100,600) are compared. 

From the order of magnitude of the maximum velocity at the various & it follows that, in 
the assumed range of relatively low values of R,, the reference velocity has been properly 
chosen. 

- 
- 0.1 0.4 - 0 . 2 5  0.25  

Figure 4. Temperature profiles for increasing Reynolds num- 
hers: comparison between R,, = 2, Rw = 100, R,, = 600 

Figure 5. Velocity profiles for increasing Reynolds numbers: com- 
parison between Rv = 2, Ru = 100, Re = 600 



3 80 M. STRANI AND R. PIVA 

The surface temperature 6 and surface velocity v2 may differ significantly, in the case of a 
diffusive interface, from the corresponding bulk values at the free surface, as shown in Figure 
6. In particular the surface velocity is always negative with absolute value larger than the 
bulk velocity, giving, for equation (36), a negative value of the stress component acting on 
the bulk fluid. On the contrary the surface temperature (I is everywhere lower than the bulk 
temperature 2: and as a consequence a positive value of the heat flux component q3 results 
from equation (37) .  

- 

I 

U 

- 0  3 ‘  

Figure 6. Distribution of bulk and surface temperature and of bulk 
and surface velocity along the interface for R- = 20, Pr = 1, a = 0.5 

and free diffusive interface 

It is interesting to notice that the interface displacement and the surface diffusivity which 
are important characteristics of the present model, may have a strong influence on the bulk 
flow field. In fact, if we assume a flat undeformable and non-diffusive interface, as usually 
considered in other computational models, we obtain a flow field with a larger recirculating 
velocity as illustrated by the comparison of velocity and temperature profiles for the case of 
R, = 20, and a = 0.5 (Figures 7 , 8 ) .  

The comparison clearly indicates that the convective motions may be largely overestimated 
by the adoption of a too simplified physical and computational model. This result, which is 
confirmed by some recent experiments on surface tension driven flows in a NaNO, melt,26 
could be of relevant importance for the technological applications where such convective 
motions are in general not desired. 
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- 0.25 u 0.1 

Figure 7. Comparison of velocity profiles at 3 = 0.5 between the 
fields with free diffusive interface and flat non-diffusive interface 

for Rw = 20, Pr = 1, a = 0.5. 

1 

Y /  h 

0 
0 . 4  

Free d i f f u s i v e  i n t .  

F la t  n o n - d i f f u s i v e  int. 

T 0.5 

Figure 8. Comparison of temperature profiles at = 0.45 between the 
fields with free diffusive interface and flat non-diffusive interface for 

R, = 20, Pr = 1, a = 0.5. 
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............................................................. 
Figure 9. Streamlines computer plot, R, = 20, Pr = 1, a = 0.2, 

Cr = 0.02. The tangent of the contact angle is set equal to 0.25 

............................................................... 
Figure 10. Streamlines computer plot, R, = 15, Pr = 1, a = 0.2, 

Cr = 0.33. The tangent of the contact angle is set to zero 
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The computational model appears to be particularly appropriate for flow fields with large 
deformations of the free surface. Figures 9 and 10 show the computer plots for the 
streamline field in two different cases (different scales are used in x and y directions). In the 
first (Figure 9) the large deformation of the surface is essentially due to the large values 
imposed for the contact angles. In the second (Figure lo), where a zero contact angle and a 
relatively large value of the Crispation number have been assumed, the large deformation is 
essentially caused by the dynamic pressure. Figure 11 shows the plot of surface velocities and 
temperatures for both cases. 

It seems worth repeating that both flow fields were obtained using only a 1 O X  10 mesh, 
analytically stretched only in the x direction. 

1 

T 

U 

- 0  3 
Figure 11. Surface velocity and temperature profiles along the 

interfaces in the cases of Figure 8, case (a), and Figure 9, case (h) 

8. CONCLUDING REMARKS 

The present invariant tensorial form of the field equations and boundary conditions allows 
the adoption of a boundary-conforming generalized system of co-ordinates, where free and 
solid boundaries are coincident with portions of the co-ordinate surfaces. The -numerical 
integration of the free boundary problem is then performed through a standard finite 
difference scheme in the transformed space ( f ' ) ,  with an accurate numerical approximation 
of the interface shape and of the associated boundary conditions in their most complete 
form. Efficient numerical solutions are obtained, with a comparatively low computer effort in 
comparison to other approaches. 

The numerical results illustrated in the previous section, although limited to the particular 
physical case in which the effect of bulk fluid (+) may be neglected, show the capabilities of 
the proposed computational model. For this sample flow, in fact, an accurate description of 
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the flow field, that accounts for surface diffusive processes, has been obtained with a quite 
coarse mesh plus an appropriate stretching near the boundaries. 

The discussion of the numerical results shows that the usual assumption of flat non- 
diffusive interface is, in general, not acceptable. 

A deeper and systematic investigation would be required for evaluating the influence on 
thermocapillary flows of the values assumed for the coefficients appearing in the constitutive 
relations. The effect of the gravity force, although very small, is also a matter of further 
investigation, for the importance of the coupling effects of buoyancy and surface tension 
driven flows. 

LIST OF SYMBOLS 

Cartesian co-ordinates system 
generalized co-ordinate system 
generalized co-ordinate system on the interface 
partial derivative with respect to Ek 
metric tensor components in (tk)((Eff )) 
covariant derivative with respect to tk  in the metric of (Ek> 
covariant derivative with respect to 5" in the metric of (5") 
interface curvature tensor components 
density in the bulk 
temperature in the bulk 
temperature on the interface 
contravariant (covariant) velocity components in the bulk 
contravariant (covariant) velocity components on the interface 
contravariant components of the bulk stress tensor 
contravariant components of the surface stress tensor 
pressure in the bulk 
surface tension 
heat flux in the bulk 
heat flux on the interface 
bulk (surface) viscosity coefficient 
bulk (surface) coefficient of thermal conduction 
non-dimensional variables 
Reynolds number 
surface tension Reynolds number 
Prandtl number 
Crispation number 
aspect ratio 
Marangoni number 

APPENDIX 

The coupled tridiagonal system in the unknowns x ( i ) ,  y( i )  (i = 1, M )  

-Aiy(i + 1) + Biy(i) - Ciy(i - 1) + Q i x ( i )  = Di 
- aix( i + 1) + bix( i) - cix( i - 1) + qiy (i) = di 

( i  = 2, M -  1) (54) 
(55)  
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with the boundary conditions 
x(1) = 

Y(l)=Yl 
x(M) = x, 

Y (MI = u, (59) 
is a particular case of the block-tridiagonal system, for which the inversion procedure is well 
known. 

However the solution algorithm assumes, for the system (54) and (55) ,  a very simple form 

(60) 
by setting 

x( i )=e( i )x( i+ l )+g( i )y( i+ l )+f ( i )  

y ( i )=E( i )y( i+ l )+G(i )x( i+ l )+F( i )  (6 1) 
following the method24 for tridiagonal systems of which (60) and (61) could be considered a 
generalization. 

After substitution of (60), (61) in (54), ( 5 9 ,  the following identities hold 

(62) 

(63) 

(64) 

-%(I?[ - C,E(i - 1)) 
e ( i )  = 

(Q~-C~G(i-1))(q~-c~g(i-1))-(bl-cle(~-l))(Bl-ClE(i-1)) 

(Q, - C,G(i - l))(q, - c,g(i - 1)) - (b, - c,e( i - l))(B, - C,E( i - 1))  
(D, + C,F(i - l))(q, -c,g(i - 1))- (d, + c,f(i - 1))(B, - C,E(i - 1)) 
(Q, - C,G(i - l))(q, -c,g(i - l))-(bL - c,e(i - l))(B, - C,E(i - 1)) 

- c l g ( i  - l)) 
d i )  = 

f ( i >  = 

(65) 
-A,(b, - c,e(i - 1)) 

(Q, -CLG(i-  l))(q, -cLg(i-l))-(b, -c,e(i- l))(Bl-CtE(i- 1)) 
E ( i )  = 

(66) 

(67) 

a,(Q, - C,G(i - 1)) 
(Q, - C,G(i - l))(ql -c,g(i - l))-(b, -c,e(i - 1))(B, - C,E(i - 1)) 
( d ,  + c,f(i - l))(Q, - C,G(i - 1)) - (D, + C,F(i - l))(b, - c,e(i - 1)) 
(Q, - C,G(i - l))(q, -c,g(i - 1))-(b, - c,e(i - 1))(B, - C,E(i - 1)) 

G(i)  = 

F ( i )  = 

After these substitutions, the same procedure of the above mentioned tridiagonal al- 
gorithm may be adopted for the solution. 

1. 
2. 

3. 

4. 

5 .  

6. 

7. 

8. 
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